THANK YOU FOR SUBSCRIBING
Weekly Brief
Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Healthcare Tech Outlook
THANK YOU FOR SUBSCRIBING
I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info
The firm’s core strategies are built around two distinctive product roadmaps—a medical diagnosis platform and a disease-specific application product. “Our packaged medical platform—m:Studio—one for ‘research’ and the other for ‘individual’ is the heart of this strategy,” says Lee. m:Studio provides a user-friendly interface for labeling and an intuitive model training environment that needs the least supervision, thereby, ensuring faster creation of models and accurate inference. Moreover, m:Studio Research—a deep learning-based medical research platform—is designed to support the detection of diseases and symptoms in the human body. m:Studio Research focuses on getting large amounts of labeled data, model tuning, and training. Automatic annotation techniques will be an essential tool for supporting listed activities. The firm is working with a Medical Research Center in Chicago—particularly with orthopedic surgeons—that are developing solutions for patients in certain areas of the body.
Though doctors are not very open to using this ‘AI detection system’ currently, as they are unsure of the results it could bring forth, CAIDE Systems is going on to build an entire body detection system. With the buzz that AI has been creating in the recent past, the firm believes that it will be utilized in the near future. In fact, CAIDE Systems is connecting with large hospitals in South Korea to test their systems. However, the firm’s brain disease detection system—a part of m:Studio that already contains numerous trained AI model sets— to review CT images and accurately sort hemorrhages and its subtypes, is out in the market and has already proven to be a success. The AI model is trained through 6,000 patients’ data and 140,000 stroke CT images, giving it the capability to detect and state stroke types and locations accurately. It eliminates all human errors and provides the inference result within a minute.
“We have successfully built our functional tools for both disease detections and effective training, and that is our biggest achievement in technology. Now we are actively communicating with customers to utilize this device,” says Lee. The firm is approaching medical research teams and contacting equipment manufacturing companies to find solutions for their hardware devices— turning them into automatic annotation systems. “As of now we are developing our software and are actively looking to provide excellent quality medical services to all in the near future,” adds Lee.
CAIDE Systems is also planning on selling their AI engine to hardware companies and PACS systems such as GE and Philips. Besides, the firm also intends on enhancing its disease detection system and training its AI models to detect over 500 diseases by 2020. “Our goal is to provide a user-friendly platform for consistent, accurate, and fast diagnosis,” concludes Lee.
Share this Article:
Tweet
|
Company
CAIDE Systems
Headquarters
Lowell, MA
Management
Jacob Lee, Founder & CEO , CAIDE Systems
Description
CAIDE Systems team consists of leading Deep Learning Scientists, experienced Software Engineers and Business Program Manager. The team holds strong UI/UX development capability and is advised by respected medical experts.